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RCL Mastery of Tabular Data:  
Outperforming Conventional Models in Stability and Accuracy 

Eslam Ahmed Abdelrahman*

ABSTRACT 
Abstract— In collaboration with Lumina AI, this research discusses the effectiveness of Random 
Contrast Learning (Lumina RCL) on a variety of tabular datasets in comparison to more traditional 
methods of machine learning.  It describes how well Lumina RCL handles small imbalanced datasets, 
resists overfitting, and generalizes without need for balancing data, feature selection, or feature scaling. 
 

I. INTRODUCTION 
Despite recent rapid advancements in the world of machine learning, it remains challenging to find 

models that can learn effectively from limited and complex data. In general, traditional machine learning 
and deep learning models, although powerful, often struggle with small or imbalanced datasets. Without 
vast amounts of data or computing power, resulting models are often inefficient or even inapplicable for 
many real-world problems.  

 
Random Contrast Learning (Lumina RCL) is a groundbreaking algorithm created to succeed in 

places where traditional models fail. Lumina RCL uses randomness as a filter to identify precisely which 
variables constitute patterns of interest. This technique, modeled after human consciousness, allows 
Lumina RCL to discern the most salient features of an entire dataset and to detect patterns even when 
datasets are small. Regardless of the size of datasets, Lumina RCL avoids becoming lost or misled by 
irrelevant details, never losing the forest for the trees. This represents a significant departure from 
traditional models that analyze data meticulously, piece by piece.  Moreover, having organized the dataset, 
Lumina RCL retains the data with near perfect recall. In other words, Lumina RCL both learns and 
memorizes.  Lumina RCL processes data with both efficiency and profundity, needing less data, requiring 
less compute, and without any sacrifice of accuracy.  
 

Previously, two research papers explored the use of Lumina RCL in different applications of image 
and text classification. “Redefining Words: The Power of RCL in Text Classification” emphasized the tool's 
ability to manage duplicate data efficiently without loss of insight. “Binary Image Classification 
Comparison Using Neural Networks and Random Contrast Learning” showcased Lumina RCL’s 
exceptional performance in medical image classification, where it displayed remarkable efficiency and 
accuracy even with minimal data. This paper continues to elaborate on just the beginnings of Lumina RCL’s 
capabilities. This paper covers the performance of Lumina RCL vs. traditional models on tabular data, 
specifically considering performance with unbalanced data, resistance to overfitting, and potential effects 
of dataset size and feature selection or scaling processes. 
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University of Ottawa and IoT from Benha University. He is certified as a machine learning engineer and data 
scientist from Microsoft and IBM. Email: eslamahme@gmail.com 
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II. DESCRIPTION OF DATASETS 
The datasets chosen for this research are public datasets used for benchmarking and evaluating machine 

learning models and represent a diverse set of challenges, especially in relation to small datasets across a 
wide array of applications. These datasets, both balanced and imbalanced, pertain to medical diagnostics, 
industrial categorization, and agricultural classification, call for binary classification and multi-class 
classification, and exhibit differences in complexity and forms of data distribution.  

1. Pima Indians Diabetes Database (768 samples, 8 attributes, 2-class, Unbalanced) 
2. Iris Flower Dataset (150 samples, 4 attributes, 3-class, Balanced) 
3. Wheat-Seeds Dataset (210 samples, 7 attributes, 3-class, Balanced) 
4. Glass Identification Dataset (214 samples, 9 attributes, 6-class, Unbalanced) 
5. Haberman’s Survival Dataset (306 samples, 3 attributes, 2-class, Unbalanced) 

2.1 Pima Indians Diabetes: 

This data collection includes measurements used to predict the likelihood of diabetes, in patients of Pima 
Indian descent aged 21 and older. It covers factors like pregnancies, glucose concentration, blood pressure, 
skin thickness, insulin levels, BMI, diabetes pedigree function, and age. 

2.2 Iris Flower: 

 This classic dataset in machine learning and statistics, the Iris Flower Dataset, is commonly used 
for classifying three species of iris flowers (Setosa, Versicolor, and Virginica) based on attributes like sepal 
length, sepal width, petal length, and petal width. 

2.3 Wheat-Seeds: 

This dataset includes characteristics of kernels from three distinct types of wheat. The features measured 
include area, perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient, and length 
of kernel groove. 

2.4 Glass Identification: 

This dataset is designed for categorizing glass types based on their chemical composition. It is often 
utilized in forensic science investigations to aid in analyzing glass samples found at crime scenes. The 
attributes considered are the index and the proportions of the eight elements found in the glass (Na, Mg, Al, 
Si, K, Ca, Ba, and Fe). 

2.5 Haberman’s Survival: 

 This dataset contains information on survival outcomes for patients who underwent breast cancer 
surgery. The factors taken into consideration are the age of the patient during the surgery, the year when the 
surgery took place, and the count of nodes found, in addition to whether the patient survived for five years 
after the operation. 
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III. METHODOLOGY 
We conducted 423 experiments to compare Random Contrast Learning (Lumina RCL) with traditional 

machine learning (ML) and deep learning (DL) models. These include training on the original datasets, 
analyses of overfitting, and variations with undersampling, oversampling, feature selection and feature 
scaling. We applied Lumina RCL and non-RCL experiments to each dataset several times and will only 
present in the next section the best sets of results achieved. One hundred seventy of the experiments 
included Lumina RCL. 232 experiments were conducted to assess eight different ML models. Twenty-one 
experiments were exclusively designed for DL models. Before considering the experiments themselves, 
this section begins by reviewing the specifications for the use of Lumina RCL, the ML models, and the DL 
models, respectively.  

3.1 Lumina RCL:  

Lumina RCL produces models that achieve better inference and exhibit compact size. As mentioned 
above, this is made possible by Lumina RCL’s use of randomness as a filter to identify patterns in tabular 
data. Consequently, there is less need for very large datasets. Lumina RCL automatically fine-tunes its 
models to the specific characteristics of the data to achieve high performance with far fewer computational 
resources. To do this, Lumina RCL uses an auto-optimize parameter in training – one of its most significant 
features. This enables Lumina RCL to learn accurately from tabular data. 
 

In our tabular dataset experiments, we used the Lumina RCL Classifier algorithm (RCLC) via the 
PrismRCL application. We ran the application on Windows machines powered by Intel i7 processors with 
128 GB of RAM and DDR4. The model setup is straightforward, allowing optimization through a single 
command line. Lumina RCL is designed to work with full CPU power in a multi-threaded application 
environment. 

3.2 Machine Learning Models:  

For our tabular dataset experiments, we carefully selected a set of machine learning models, considering 
their unique advantages and diverse architectures. These ML models show how traditional models perform 
on tabular data and therefore allow us to showcase the innovative capabilities of Lumina RCL. These 
experiments have been performed on the same hardware as the Lumina RCL experiments: Intel i7 Processor 
with 128 GB DDR4 RAM, and CPU processing without GPU. 

 
• Logistic Regression has been included as a test against all other models due to its simple form and 

applicability to most binary classification tasks. 
• Decision Tree and Random Forest were selected for their simplicity and enhanced accuracy, 

respectively, effectively addressing diverse dataset challenges. 
• Gradient Boosting and XGBoost were selected for their high performance with sequential error 

correction and efficient handling of all types of data. 
• SVM (Support Vector Machine) was selected for its ability to establish complex class boundaries. 
• KNN (K-Nearest Neighbors) was selected for its ability to classify based on similarity.  
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• Naive Bayes has been included for its performance with datasets exhibiting feature independence. 

3.3 Deep Learning Models: 

For our tabular dataset experiments, we developed a unique neural network on Google CoLab for each 
dataset based on its features and complexities. For each dataset, we experimented in TensorFlow with 
activation functions like sigmoid, SoftMax, and ReLU, with an Adam optimizer, to get the best fit for the 
characteristics of the dataset. We performed the tests and fine-tuned our models to identify the most suitable 
configuration in terms of performance to be used with each neural network. These experiments have been 
performed on hardware with the following specifications:  

 
• GPU:  1xTesla T4, with 2560 CUDA cores, compute 3.7, and 15GB (15.079GB Usable) GDDR6 

VRAM. 
• CPU:  1xsingle-core hyper-threaded Xeon Processor @ 2.3GHz (No Turbo Boost) with 45MB 

Cache. 
• RAM: Approximately 12.7GB available. 
• Disk: Approximately 78GB available. 

3.4 Comparative Experiments 

3.4.1 Original Dataset Experiment 
This initial experiment used all five of the original datasets without any modifications. The objective 

was to assess the ability of Lumina RCL, the selected ML models, and the DL models to handle data in 
its unaltered form. By avoiding data shaping techniques like balancing or feature selection, we aimed 
to measure the capacity of each model to understand and classify data as-is. This approach allowed us 
to establish a baseline performance metric for all models, and to highlight their innate strengths and 
limitations in processing raw data. 

 
3.4.2 Overfitting Analysis 

This experiment was designed to evaluate how well Lumina RCL, the selected ML models, and the 
deep learning models to avoid overfitting with small or unbalanced datasets across five data scenarios. 
This issue arises when a model learns too much from its training data and is measured by comparing 
how it performs on new, unseen data. This experiment determines whether each model merely 
memorizes patterns or achieves an understanding of them. The latter, which we may also understand as 
resistance to overfitting, is demonstrated by a small difference in accuracy between training and testing.  

 

3.4.3 Balanced vs. Unbalanced Data Handling (Undersampling and Oversampling): 
Because the Iris wheat and Wheat-Seed datasets are already balanced, we next focused on the 

unbalanced Pima Indians Diabetes, Glass Identification, and Haberman’s Survival datasets. These 
are small datasets, so even a little imbalance could potentially sway our results. After balancing these 
datasets through undersampling or oversampling we tested the accuracy of Lumina RCL, the selected 
ML models, and the deep learning models, and compared these accuracies with our initial experiment.  
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• Undersampling Experiment: Undersampling reduces the size of larger classes to match the 

smaller classes. This technique is rarely applied to small datasets. A significant loss of model 
accuracy indicates the loss of important information, i.e. the model no longer fully understands the 
data, which is also known as underfitting. 

• Oversampling Experiment: Oversampling increases the size of smaller classes to match the larger 
classes.  Improvement in accuracy after oversampling indicates that increasing the minority class 
size helped the model learn better about underrepresented classes, but oversampling can lead to 
overfitting, i.e. the model memorizes the oversampled data instead of learning from it. 

 
3.4.4 Feature Selection 

Traditionally, feature selection is a critical step in machine learning. We sought to determine whether 
feature selection improves the performance of Lumina RCL, in contrast with traditional models.  For 
this experiment we used Wheat-Seeds, Glass Identification, and Haberman’s Survival datasets to 
test across balanced and unbalanced, binary, and multiclass datasets. Because these datasets have 
numerical input data and a categorical target variable, we used for feature selection ANOVA (Analysis 
of Variance) and wrapper methods. We compared the rate of accuracy with and without the use of 
feature selection.  
 
3.4.5 Feature Scaling 

Especially for logistic regression, other non-tree-based algorithms, and some deep learning models, 
feature scaling is an important preprocessing step that standardizes the variable range to ensure that all 
features contribute equally to model training. We sought to determine whether the accuracy and 
performance of Lumina RCL remained consistent after feature scaling, in contrast with other models 
that are usually impacted by this preprocessing step.  
 

IV. RESULTS 
 

This section presents the comprehensive results of our experiments comparing the performance of 
Lumina RCL against traditional machine learning and deep learning models across the five datasets. The 
results demonstrate Lumina RCL’s stability and accuracy with imbalanced data and its resistance to 
overfitting. They also showcase Lumina RCL’s effectiveness with small datasets and its independence from 
feature selection and feature scaling processes. Lumina RCL provides metrics for recall, f1-score, accuracy, 
precision for each class, and overall accuracy for all classes. Here we will concern ourselves with accuracy.  
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4.1 Original Dataset Experiment Results: 

We began by testing the accuracy of Lumina RCL, the selected ML models, and the deep learning 
models on all five datasets without any modifications, as displayed in Table 4.1 and Figure 4.1.  
 

Dataset 
RCL 

Model 
DL 

model 
Logistic 

Regression 
Decision 

Tree 
Random 

Forest 
Gradient 
Boosting 

XG 
Boost 

SVM KNN 
Naïve 
Bayes 

Pima 
Indians 74.10 72.73 77.59 71.09 75.77 76.42 74.47 75.77 69.92 75.12 

Iris 95.70 96.67 97.33 94.00 96.00 95.33 94.0 96.6 97.33 96.00 
Wheat-
seeds 93.80 87.14 92.38 87.61 92.38 92.85 93.33 90.95 89.04 90.95 

Glass 70.00 58.14 62.79 66.69 77.03 74.70 77.01 33.27 66.17 55.28 

Haberman 72.70 72.59 72.84 65.99 67.67 70.78 64.20 71.45 72.82 74.24 

 

 

 As expected, the range of models tested yielded a range of results. Noteworthy are the poor 
performances of the DL model (58.14%), SVM (33.27%), and Naïve Bayes (55.28%) on the Glass 
Identification dataset. These results provided a baseline for further evaluation. These results provided a 
baseline for further experimentation under various data transformations. 

4.2 Overfitting Analysis Results: 

 Next, we tested how well Lumina RCL, the selected ML models, and the DL models learned rather 
than memorized patterns in the datasets. For some of the models, we found significant changes between 
training and testing accuracies. This indicates a widespread problem of overfitting. In other words, these 
models memorized instead of learned; they failed to understand the data. Table 4.2 shows the delta values 
between train set accuracies and test set accuracies for each of the models and each of the five datasets. 

 

 
 

Table 4.1. Accuracy values for Lumina RCL, deep learning, and machine learning models on all datasets.  

Figure 4.1. Accuracy values for Lumina RCL, deep learning, and machine learning models on all datasets.  
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𝑑𝑒𝑙𝑡𝑎	𝑣𝑎𝑙𝑢𝑒 = 	𝑡𝑟𝑎𝑖𝑛	𝑠𝑒𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑒𝑠𝑡	𝑠𝑒𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒 
 

Dataset RCL 
Model 

DL 
model 

Logistic 
Regression 

Decision 
Tree 

Random 
Forest 

Gradient 
Boosting 

XG 
Boost 

SVM KNN Naïve 
Bayes 

Pima Indians 2.4 1.7 1.65 29.31 25 10.78 22.41 4.18 13.84 1.23 

Iris 0.6 0.33 1.99 8.7 8.7 4.35 8.7 6.33 3.94 5.55 

Wheat-
seeds 

0.9 2.03 0.95 3.13 6.25 3.13 3.13 -3.3 4.07 0.39 

Glass 1.4 1.99 3.8 31.25 21.88 21.88 28.13 -2.14 13.19 9.48 
Haberman’s 

survival  
0.3 3.89 1.64 41.13 32.04 18.48 31.22 -0.19 11.33 1.64 

Average 
difference 1.12 1.988 2.006 22.704 18.774 11.724 18.718 3.228 9.274 3.658 

 
As shown in Table 4.2, Lumina RCL exhibited the lowest delta values for the Pima Indians, Glass 

Identification, and Haberman’s Survival datasets - 2.4, 1.4, 0.3, respectively. This clearly contrasts with 
double-digit delta values, such as of the Decision Tree and Random Forest models, which indicate 
significant overfitting. Lumina RCL stands out when we compare the averages delta values across all five 
datasets for each of the tested models. For a better illustration, see the average delta value across all datasets 
for each model as shown in Figure 4.2. 

 

 
 

The results presented in the table and the figure above show the stability of Lumina’s Random 
Contrast Learning (Lumina RCL) against overfitting. Lumina RCL has an average difference between 
training and testing accuracies of 1.12 - significantly less than most traditional models. 

 

4.3 Balanced vs. Unbalanced Data Handling Results: 

Real-world data is often uneven, which can cause bias toward prevalent classes. The next set of 
experiments measured how balancing datasets through undersampling and oversampling affected model 
accuracies.  

Decision
Tree

Random
Forest XGBoost Gradient

Boosting KNN Naive
Bayes SVM Logistic

Regression DL Model RCL

Average difference 22.704 18.774 18.718 11.724 9.274 3.658 3.228 2.006 1.988 1.12
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Table 4.2. Delta values between the training accuracies and test accuracies. 

Figure 4.2.  Average delta values between training accuracies and test accuracies from greatest to least. 
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4.3.1 Undersampling Experiment Results: 
As mentioned before, undersampling reduces the size of larger classes to match smaller ones. This 

method risks losing information in the dataset and thereby decreasing model performance. 
Undersampling is typically not applied to small datasets, but we tested this anyway to determine its 
effect on Lumina RCL. Table 4.3.1 shows the delta values for each model:  

 
𝑑𝑒𝑙𝑡𝑎	𝑣𝑎𝑙𝑢𝑒 = 	 |𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑑𝑎𝑡𝑎	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒	 − 	𝑢𝑛𝑑𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑑𝑎𝑡𝑎	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒|	 

 

Dataset 
RCL 

Mode
l 

DL 
model 

Logistic 
Regression 

Decision 
Tree 

Random 
Forest 

Gradient 
Boosting 

XG 
Boost SVM KNN 

Naïve 
Bayes 

Pima Indians 0.2 9.74 2.86 4.94 3.77 1.94 1.69 3.24 1.95 1.42 

Glass 0.1 13.95 15.19 19.33 10.43 25.46 28.22 0.41 19.65 14.59 

Haberman’s 
survival  2.3 11.42 4.5 10.78 5.97 11.41 5.51 0.69 11.75 4.89 

Average 
difference 0.87 11.70 7.517 11.68 6.72 12.94 11.81 1.45 11.12 6.97 

Among all models, Lumina RCL had the lowest average 
delta value at just 0.87. This suggests that Lumina RCL does 
not require data balancing and readily recognizes minority 
classes in naturally unbalanced datasets. As expected, when 
applying undersampling to small datasets, many models saw 
significant drops in accuracy. (Note: Table 4.3.1 reflects only 
absolute values.) Especially with the Glass Identification 
dataset, most competitors suffered even double-digit losses in 
accuracy. While SVM showed a very small delta value, SVM 
did not exhibit an impressive original dataset accuracy to 
begin with, as shown in both Table 4.1 and Figure 4.1.   These 
results illustrate RCL’s remarkable ability, compared with 
other models applied to small datasets, to maintain performance even when the data is undersampled. 

 
4.3.2 Oversampling Experiment Results: 

Opposite of undersampling, oversampling resolves imbalances in datasets by increasing the size 
of the smaller classes through repetition or interpolation to match the larger classes. This technique may 
improve model performance, but it risks overfitting. To mirror our undersampling experiment, we 
applied oversampling to the whole datasets to measure its effect on the accuracy of Lumina RCL, the 
selected ML models, and the DL models. Table 4.3.2 shows the delta value for each model: 

 
 
 

Table 4.3.1 Delta values between the original dataset accuracies and accuracies after undersampling. 

Figure 4.3.1 Differences in accuracy values before and after 
undersampling. 
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𝑑𝑒𝑙𝑡𝑎	𝑣𝑎𝑙𝑢𝑒 = 	 |𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑑𝑎𝑡𝑎	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒	 − 	𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑	𝑑𝑎𝑡𝑎	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒|	 
 

Dataset 
RCL 
Mod

el 

DL 
model 

Logistic 
Regression 

Decision 
Tree 

Random 
Forest 

Gradient 
Boosting 

XG 
Boost SVM KNN 

Naïve 
Bayes 

Pima Indians 0.60 2.60 3.89 1.56 4.56 0.52 0.90 3.64 4.55 0.38 

Glass 0.20 6.98 5.65 1.95 14.05 2.27 1.34 1.06 1.43 19.15 
Haberman’s 

survival  0.30 2.79 2.42 1.78 0.76 4.19 1.38 2.39 14.16 0.03 

Average 
difference 0.37 4.12 3.99 1.76 6.46 2.33 1.21 2.36 6.71 6.52 

 

The results were varied. In most cases, model performance was negatively impacted by 
oversampling, suggesting that the technique does not work well with small datasets. (Note: Table 4.3.1 
reflects only absolute values.) However, the delta value for Random Forest on the Glass Identification 
dataset was an improvement.  Just as in the undersampling experiment, Lumina RCL showed the lowest 
average delta value at 0.37.  Again, this suggests that Lumina RCL readily recognizes classes in 
naturally unbalanced datasets and even showcases its robustness in the face of manipulated datasets. 
The stability of Lumina RCL, regardless of the dataset type, demonstrates that its ability to generalize 
from data neither needs nor suffers due to oversampling. This feature is very useful in real-life scenarios 
where data imbalance is a common issue. For a better illustration, see the average delta value for each 
model in all datasets in Figure 4.3.2.  

 

  
 
 

 Because the effect on the accuracies of the models by oversampling were varied, we decided not to 
proceed with testing consequent overfitting. 

 
 

KNN NAIVE
BAYES

Random
Forest DL Logistic

Regression SVM Gradient
Boosting

Decision
Tree XGBoost RCL

Average difference 6.71 6.52 6.46 4.12 3.99 2.36 2.33 1.76 1.21 0.37
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Table 4.3.2 Delta values between original accuracies and accuracies after oversampling.  

Figure 4.3.2 Average delta values after applying Oversampling on all models from greatest to least. 
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4.4 Feature Selection Experiment Results: 

 Next, we tested the effects of feature selection on Lumina RCL, the selected ML models, and DL 
models. Most models show modest gains in accuracy. Feature Selection Experiment Results:In Table 4.4, 
we determined the delta value for each model: 

𝑑𝑒𝑙𝑡𝑎	𝑣𝑎𝑙𝑢𝑒 = 	 |	𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑑𝑎𝑡𝑎	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒	 − 	𝑑𝑎𝑡𝑎𝑠𝑒𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒	𝑎𝑓𝑡𝑒𝑟	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛|	 
 

Dataset 
RCL 

Model 
Logistic 

Regression 
Decision 

Tree 
Random 

Forest 
Gradient 
Boosting XGBoost SVM KNN 

Naïve 
Bayes 

Wheat-
seeds 0.81 1.91 3.34 3.33 2.37 5.23 1.9 2.39 1.91 

Glass 0.62 0.93 0.91 1.84 3.22 0.56 0 2.32 15.02 
Haberman’s 

survival  0.75 0.35 6.85 7.6 0 9.69 1.41 0.31 2.77 

Average 
difference 0.74 1.063 3.7 4.26 1.86 5.16 1.10 1.67 6.567 

 
Lumina RCL shows the smallest average delta value among all models tested. This suggests that 

feature selection provides no benefit beyond the native feature-selecting capacity of Lumina RCL. This is 
displayed in Figure 4.4.   

 

 
 

4.44.5 Feature Scaling Experiment Results: 

Feature scaling is a technique that standardizes the range of features in a dataset. Table 4.5 shows how 
each model responds to this technique:  
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Table 4.4 Delta values between original accuracies and accuracies after feature selection. 

Figure 4.4 Average delta values after applying Feature Selection on all models from greatest to least. 
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𝑑𝑒𝑙𝑡𝑎	𝑣𝑎𝑙𝑢𝑒 = 	 |𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑑𝑎𝑡𝑎	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒	 − 	𝑑𝑎𝑡𝑎𝑠𝑒𝑡	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑣𝑎𝑙𝑢𝑒	𝑎𝑓𝑡𝑒𝑟	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑠𝑐𝑎𝑙𝑖𝑛𝑔|	 
 

Dataset RCL 
Model 

Logistic 
Regression 

Decision 
Tree 

Random 
Forest 

Gradient 
Boosting 

XG 
Boost 

SVM KNN Naïve 
Bayes 

Pima Indians 0.3 0.51 0.01 0.13 0 0.01 0.4 2.99 0 

Iris 0.28 2 0 0 0.66 0 0.6 2 0 
Wheat-
seeds 0.2 1.43 0.01 0.48 0.01 0 2.38 4.29 0 

Glass 0.47 1.43 0.46 0.94 0.46 0 37.6 0.5 12.12 
Haberman’s 

survival  0.03 0.34 0.02 1.04 0 0 1.05 2.07 0.35 

Average 
difference 0.256 1.142 0.1 0.518 0.226 0.002 8.406 2.37 2.494 

 
As shown in Table 4.5 Lumina RCL exhibited little change in accuracy due to feature scaling. Other 

tree-based models – Decision Tree, Random Forest, Gradient Boosting, and XGBoost – behaved similarly.  
Consequently, insensitivity to feature scaling processes is a notable characteristic of tree-based models 
generally rather than Lumina RCL specifically. See their positions in Figure 4.5.  

 

 

Overall Comparative Analysis: 

Machine learning models respond to different data transformations in different ways. The average 
delta values across the relevant datasets before and after the applications of data transformation are 
summarized in Table 5.1.  

 
 
 
 
 

SVM Naive Bayes KNN Logistic
Regression

Random
Forest RCL Gradient

Boosting
Decision

Tree XGBoost

average Diff 8.406 2.494 2.37 1.142 0.518 0.256 0.226 0.1 0.002
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Table 4.5 Delta values between original accuracies and accuracies after feature scaling. 

Figure 4.5 Average delta values after applying feature scaling on all models from greatest to least. 
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Average 
difference 

RCL DL models 
Logistic 
Regressi

on 

Decision 
Tree 

Random 
Forest 

Gradient 
Boosting 

XG 
Boost 

SVM KNN Naïve 
Bayes 

overfitting 1.12 1.988 2.006 22.704 18.774 11.724 18.72 3.23 9.274 3.658 

undersampling 0.58 7.98 4.832 7.392 5.444 8.088 7.084 1.09 6.766 4.18 

oversampling 0.28 3.33 2.62 1.16 5.32 1.81 0.72 1.43 4.16 3.91 

feature 
selection 0.73 - 1.06 3.7 4.26 1.86 5.16 1.1 1.67 6.57 

feature scaling 0.26 - 1.142 0.1 0.518 0.226 0.002 8.41 2.37 2.494 

 
In four of five experiments, Lumina RCL maintains the lowest average delta value. In the feature 

scaling experiment, RCL exhibited behavior similar to other tree-based models.  This stability suggests a 
strong capacity for generalization, i.e. an understanding of the underlying patterns in data, despite 
difficulties with small or imbalanced datasets. In contrast, the performance of other models is dependent on 
the selection of data transformation techniques. Based on these results, we believe that Lumina RCL fills a 
gap in the world of machine learning. It learns effectively from limited and complex data. It resists 
overfitting. It readily recognizes underrepresented classes. It is insensitive to oversampling. And it requires 
neither feature selection nor feature scaling but handles data well in its natural form. These are precisely 
the characteristics of human consciousness that Lumina RCL was designed to mimic.  

 

V. CONCLUSION 
We conducted 521 experiments on five public datasets widely used for benchmarking, simulating a 

diverse set of challenges with small datasets. We tested Lumina RCL, eight different machine learning 
models, and five deep learning neural networks – one for each of the datasets. We then tested all of these 
with five different data transformations. We found that Lumina RCL, in comparison with all other models, 
exhibits remarkable stability and accuracy with datasets that are small and naturally imbalanced. Lumina 
RCL was designed to mimic human consciousness and for this reason excels with limited and complex data 
typically found in real-world situations. We have demonstrated that Lumina RCL neither needs nor suffers 
from preprocessing steps of data transformation or manipulation to maintain its accuracy. Moreover, in 
addition to these characteristics, the cost-savings of Lumina RCL, which runs on CPU, holds immense 
potential for the entire field of machine learning.  
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Table 5.1 The average delta values of dataset accuracies for each experiment before and after data transformation. 

Figure 5.1 Average delta values of dataset accuracies for each experiment before and after data transformation. 


