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Abstract 

In this paper, we demonstrate that RCL scales lin-
early with dataset size and compute. We also indi-
cate how RCL both differs from transformer ar-
chitecture and promises better performance. RCL 
does not employ neural networks. Unlike deep 
learning, RCL training time is a function of only 
dataset size and compute, and RCL model size is 
a function of dataset size. Additionally, we 
demonstrate that RCL continues to scale linearly 
whether or not we control for entropy.  Finally, by 2

employing a shared-nothing architecture and run-
ning on CPU, RCL scales without theoretical limit 
as 1) dataset size increases or 2) processes are 
distributed across more machines.  

1. Introduction 

In February 2022, we introduced a new approach 
to machine learning called Random Contrast 
Learning (RCL). We have focused primarily on 
applying RCL to language because the vast major-
ity of reasoning tasks can be expressed and evalu-
ated in language.  Our research continues to 3

demonstrate its general applicability to fields in 
and beyond natural language processing. Our 
most recent tests compare a Keras-framework 
deep learning neural network to RCL. RCL trains 
1,107x faster, runs inference 14x faster, and pro-
duces a model that is 191x smaller, and achieves 
99% recall. 

The following sections illustrate the behavior of 
RCL as 1) dataset size increases and entropy is 
constant, 2) dataset size increases and entropy is 

dynamic, and 3) dataset size is constant while 
thread count increases. We then compare neural 
network scaling behavior with RCL. 

1.2 Dataset 

OpenAI’s GPT-J training dataset (The Pile) is the 
current unofficial standard for training open 
source large language models. Thus far, we have 
used the 166MB EU Document English subset  to 4

demonstrate RCL scaling behavior. 

1.3 CPU Hardware 

RCL runs faster on CPU than GPU. The following 
RCL tests took place on a physical machine with 
2x32 Cores 2.3 GHz and 128 GB RAM Non-GPU 
enabled. 

1.4 Method 

In each experiment, models were built at least 5 
times. Maximum and minimum times were re-
moved from each set to avoid skew by outliers. 
The graphs below exhibit the average metrics of 
the remaining models. Additionally, we used 1MB 
to 166MB datasets to demonstrate scaling behav-
ior across two orders of magnitude. 

2. Experiments 

Increasing Dataset Size with Constant Entropy 

Given a domain in which most distinct tokens are 
known (e.g. words in a language), data from that 
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 RCL has theoretical implications for entropy in general. Given a domain has a finite number of distinct tokens, RCL 2

scales linearly to sublinearly at scale. 
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domain will approach constant entropy as dataset 
size increases. Likewise, as entropy approaches 
constant, slope of training speed also approaches 
a constant value. 
 

In the experiment illustrated in Figure 1, we be-
gan with a 1MB sample of the EU Document 
dataset, duplicated it up to 10x, and trained a new 
model at each 1MB interval. The training time 
predictably increased at a linear rate as dataset 
size increased. 
 
Increasing Dataset Size with Dynamic Entropy 
 

Next, we increased dataset size in 20% intervals 
of the EU Document dataset from 33.1MB to 
166MB. Though entropy increased at each inter-
val, training time increased near linearly.  

Parallelizing Virtual Machines 
 

Using the 166MB dataset, we parallelized pro-
cesses across 10 virtual machines. Figure 4 shows 
that training time increased linearly as dataset size 
increased. 

Increasing Thread Count 

We then increased thread count in 100 thread and 
500 thread increments. The graphs show that 
training speed improves as we distribute RCL 
processes across threads. 

Neural Network Scaling Behavior 

In deep learning, training time and inference time 
are independent variables and not functions of 
dataset size and entropy. Instead, neural scaling 
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laws are far more complex. In Figures 5 and 6, we 
illustrate why one characteristic of neural net-
works — neurons  per layer — poses problems at 
scale.  

We increased the number of neurons per layer in 
the neural network. For each new neuron per lay-
er, training time and inference time both increased 
exponentially. 

3. Theoretical Implications 

Inference time for a neural network increases ex-
ponentially as the number of neurons per layer 
increases. This is because most neurons of each 
layer connect to all neurons in the adjacent layers. 
In contrast, the nodes of an RCL model only ever 
have one parent. This means that inference time 
will scale sublinearly as model size increases. 
Subsequently, though our current experiments 
show 14x improved inference speed at small 
scales, RCL models likely run at orders of magni-
tude faster inference speeds when compared to 
neural models at larger scales. 

4. Conclusion 

RCL reduces the number of independent variables 
in the machine learning process: The approach 
employs a CPU-based shared-nothing architecture 
that scales linearly with dataset size and compute 
without theoretical limits for either. Its unique 
approach minimizes the impact of entropy and 
maintains close to constant inference speed at 
scale. RCL outperforms neural networks in train-
ing speed, inference speed, model size, and recall 

and promises orders of magnitude improved per-
formance for state-of-the-art machine learning 
systems. 
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